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Abstract-The problem of mixed convection about a vertical flat plate embedded in a porous medium is 
analyzed. Nonsimilarity solutions are obtained for the cases of variable wall temperature (VWT) in the 
form T,(s) = r, +ux” and variable surface heat flux (VHF) in the form q,(x) = bx”. The entire mixed 
convection regime is covered by two different nonsimilarity parameters x = [I +(Ra,/Pe,)“‘]-’ and 
x* = [l + (Ra:/Pe,F’) ‘/‘I- ‘, respectively, for VWT and VHF cases, from pure forced convection (x = 1 or 
x* = 1) to pure free convection (x = 0 or x* = 0). A finite-difference scheme was used to solve the system 
of transformed governing equations. Velocity and temperature profiles, and local Nusselt numbers are 
presented. It is found that as x or x* decreases from I to 0, the thermal boundary layer thickness 
increases first and then decreases, but the local Nusselt number in the form Nu,(Pe,i” + Ra,:“)-’ or 
I%,(&:” + Ra: I”)- ’ decreases first and then increases. The correlation equations for the local and average 

Nusselt numbers are also obtained for the two surface heating conditions. 

INTRODUCTION 

THE STUDY of natural or mixed convection boundary- 
layer flow along an impermeable surface embedded 
in fluid-saturated porous media has received much 
attention in recent years. Many of the studies [l-5] 
were based on Darcy’s law which neglects the viscous 
force acting on the impermeable surface and does not 
take into account the non-slip boundary condition at 
the wall. From the work of Hong et al. [6], the non- 
slip wall effect is found to decrease with increasing 
distance downstream of the leading edge and to be 
negligible for low-porosity media. On the other hand, 
because the non-slip boundary condition has a lesser 
effect on heat transfer rate than it does on the velocity 
field [7], Darcy’s model is still acceptable, especially 
when the flow velocity is low [6] and the heat transfer 
is of interest. 

Most of the published results are limited to situ- 
ations in which similarity solutions exist [l, 21. A 
general similarity transformation for mixed con- 
vection flow in a porous medium was reported by 
Nakayama and Koyama [8] for different types of 
geometries. However, the flow and thermal fields in 
mixed convection from surfaces in a porous medium 
are nonsimilar in nature. Nakayama and Pop [9] pro- 
posed a unified similarity transformation to cover all 
possible similarity solutions for free, forced, and 
mixed convection within Darcy and non-Darcy 
porous media, but the cases they considered for solu- 
tion were restricted to the local similarity approxi- 
mation. Nonsimilarity solutions for mixed convection 

about a nonisothermal horizontal cylinder and sphere 
embedded in a porous medium are reported by Min- 
kowycz et al. [IO] who employed the local non- 
similarity method of solution to obtain numerical 
results which were compared with those obtained 
from the local similarity solution. A deviation of IO- 
15% in the results between the two sets of solutions 
were reported. Hsieh et al. [l I] reported nonsimilarity 
solutions for the problem of mixed convection along 
a vertical flat plate embedded in a porous medium by 
dividing the entire mixed convection regime into two 
regions ; one covers the forced convection dominated 
regime and the other covers the free convection domi- 
nated regime. Two different nonsimilarity parameters 
were found to characterize the two separate 
regions. 

The aim of the present work is to study mixed 
convection from a vertical flat plate embedded in a 
porous medium by introducing a single nonsimilarity 
parameter which covers the entire regime of mixed 
convection. Two surface heating conditions are con- 
sidered : power-law variation of the wall temperature 
and power-law variation of the surface heat flux. In 
the former heating condition, the nonsimilarity par- 
ameter x = [1+ (Ra,/Pq,) I/‘]- ‘, which varies from 
one for pure forced convection to zero for pure free 
convection, is introduced. In the latter, the non- 
similarity parameter x* = [ 1+ (Ru.t/PeJ’*) “3] - ’ , 
which also varies from one for pure forced convection 
to zero for pure free convection, is introduced. 
Numerical results were obtained by using a finite- 
difference scheme to solve the transformed systems of 
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NOMENCLATURE 

dimensionless stream function for the 
case of VWT 
dimensionless stream function for the 
case of VHF 
local heat transfer coefficient 
average heat transfer coefficient 
(l/Ok h(x) dx 
thermal conductivity 
permeability coefficient of the porous 
medium 
length of the plate 
local Nusselt number, hx/k 
average Nusselt number, kL/k 
local Peclet number, u-x/a 
local surface heat flux 
local Rayleigh number for the VWT case, 
g/W&) - Tml~l(vd 
local Rayleigh number for the VHF case, 
g&w C-4 fi*/(kv4 
temperature 
free stream temperature 
wall temperature 
velocity components in x- and y-direction 
free stream velocity 
axial and normal coordinates. 

Greek symbols 
u effective thermal diffusivity of saturated 

porous medium 

volumetric coefficient of thermal 
expansion 
boundary layer thickness 
pseudo-similarity variable for the VWT 
case 
pseudo-similarity variable for the VHF 
case 
value of r~ at the edge of boundary 
layer 
dimensionless temperature for the VWT 
case 
dimensionless temperature for the VHF 
case 
dynamic viscosity 
kinematic viscosity 
fluid density 
local wall shear stress 
nonsimilarity parameter for the VWT 
case 
nonsimilarity parameter for the VHF 
case 
stream function. 

Subscripts 
f forced convection dominated 

condition 
n free convection dominated 

condition. 

equations. Correlation equations for the local and 
average Nusselt numbers are also presented. 

a2* K 

ay’-/.l --Pd$ 

ANALYSIS 

Consider the problem of mixed convection along 
a heated vertical flat plate embedded in a saturated 
porous medium. The axial and normal coordinates 
are x and y, and the gravitational acceleration g is 
acting downward in the direction opposite to the x 
coordinate. The surface of the plate is subjected to a 
power-law variation in wall temperature, Tw(x), or 
wall heat flux, qw(x). Fluid properties are assumed to 
be constant except for variations in density, and the 
porous medium is treated as isotropic. In addition, the 
flow velocity and the pores of the porous medium are 
assumed to be small for the Darcy’s model to be valid 
[6]. With these assumptions and the application of the 
Boussinesq and boundary layer approximations, the 
governing system of conservation equations can be 
written as [4] 

aU+E=o 
ax ay 

In the equations above, the stream function $ satisfies 
the continuity equation (1) with u = a$/ay and 
v = -8$/8x, where u and v are Darcy’s velocities in 
the x and y directions ; T is the temperature ; p, p 
and p are the density, dynamic viscosity and thermal 
expansion coefficient of the fluid ; and K and 0: are, 
respectively, the permeability and equivalent thermal 
diffusivity of the porous medium. 

The boundary conditions for the present problem 
are 

v=O, T=T,(x)=T,+ax” or 

qw = -k(f3T/ay),,,o = bx” at y = 0, 

u+u,, T+T, asy+m (4) 

where a, b, n and m are prescribed constants. It is 
noted here that the case of uniform wall temperature 
corresponds to n = 0, whereas that of uniform surface 
heat flux to m = 0. The next step is to transform the 
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system of equations (2)-(4) into a dimensionless form, 
separately for the case of power-law wall temperature 
variation and the case of power-law surface heat flux 
variation. 

A. Power-law variation of wall temperature, 
T,,,(x) = T, +ax” 

In this case the following dimensionless non- 
similarity variables are introduced : 

rl=Ype;12X-’ 
x (5) 

JI = a Pe.i’* x- ‘f(x, ~1, 0(x, ~1 = 
T- T, 

Tw (4 - T, 
(6) 

local Nusselt number expression, equation (14). The 
final expression is 

dx (15) 

where Pe, and xL are values of Pe, and x at x = L. 
For the case of uniform wall temperature (i.e. n = 0), 
the corresponding average Nusselt number expression 
can be written as 

[Xi],,o = 2Pe1’* xL’[-O’(xL,O)]. (16) 

(7) 

where Pe, = u,x/cr is the local Peclet number, 
Ra, = g/I[T,(x) - T&X/W is the local Rayleigh 
number, and x is the nonsimilarity mixed convection 
parameter. 

Substituting equations (5)-(7) into equations (2)- 
(4), one can obtain the following system of equations : 

f” = (l-x)% (8) 

&+:[I +n(i -x)]fedf’e 

= !_nx(l-x) (e+-$) (9) 

with the boundary conditions 

11 +nu -xMx> 0) -nxu -XI $x, 0) = 0 

or f(x, 0) = 0, e(x, 0) = 1 

Y(X, 4 = ~2, fax, 4 = 0. (10) 

The primes in equations (8)-(10) denote partial 
differentiations with respect to q. 

The physical quantities of interest include the vel- 
ocity components u and v, the wall shear stress TV, 
defined as rW = ~(&/dy),=,, and the local Nusselt 
number Nu, = hx/k, where h = q,/[T,(x) - T,J. 
They are given by 

u = l&,x-*j- (11) 

v= -(t)Pe.J/*x-‘If[l+n(l-X)i/ 

-;[l-n(l-x)]rlf’-;nx(l-~)~ (12) 
I 

Tw 
0 

f  (Pe:” f  Raj/‘)- 3 =f”(x, 0) (13) 

Nu,(Ped’* + Rail*)- ’ = - 6’(x, 0). (14) 

The average Nusselt number % can be evaluated by 
finding the average heat transfer coefficient 6from the 

B. Power-law variation of surface heat jux, 
qw(x) = bx”’ 

For this case, one introduces the following dimen- 
sionless variables : 

'I* = Ype,;l* x*- ' 
X 

I) = a PqJ’* x*- ‘F(X*, q*), 

(17) 

o(x*,rl*) = 
(T- T,) Pe.:‘* x*- ’ 

qw(x)xlk 

x* = [l, ($Y31’ 

(18) 

(19) 

where Ra.: = g/?q,(x)Kx’/kva denotes the Rayleigh 
number and x* the nonsimilarity mixed convection 
parameter. 

The transformation of equations (2)-(4) yields 

F” = (1 -x*)3@’ (20) 

O”+~[l+~(m+~)(l-X*)]F@’ 

- m+f 
( )[ 

I-i(l-x*)]PO 

=i(m+k)x*(l-x*)(O’g-Fg) (21) 

~[l+~(m+~)(l-x*)]F(x*.O) 

-f m+i x*(1--x*)$(x*,0)=0 
( > 

or F(x*, 0) = 0, a’(~*, 0) = - 1 

F’cx*, 03) = x*2, 0(x*, co) = 0 cm 

where the primes denote partial differentiations with 
respect to ‘I*. 

The velocity components u and v, the wall shear 
stress and the local Nusselt number for this case have 
the expressions 
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u = u,x*-~F 

v= -(z)Pe;12,*-i {[;+;(m+;)(,-x*)lF 

-[;-f(m+;)(l-x*)]q*F 

(24) 

7w 
0 

$ (Pe.:‘2+Ra$“3)-3 = F”(x*,O) (25) 

Nu,(Pe.:‘2+Ra.;“3)-’ = &. W-9 
7 

The average Nusselt number Nu can be expressed as 

(27) 

where PeL and XT are values of Pe, and x* at .Y = L. 
For the case of uniform wall temperature (i.e. 
m = -0.5) the corresponding expression is 

(28) 

The two systems of equations, equations (8)-(10) 
and (20)-(22) for the VWT and VHF cases, respec- 
tively, can be solved using a finite-difference method 
as described by Cebeci and Bradshaw [12]. In this 
method, the partial differential equations (8)-(g) or 
(20)-(21) are first reduced to a system of first-order 
ordinary differential equations which are then ex- 
pressed in finite-difference form and solved, along 
with their boundary conditions, by an iterative scheme. 
To conserve space, the details of the solution pro- 
cedure are not represented here. It suffices to mention 
that a step size of Au = 0.02 and I], values of 8-18 
were found to provide accurate numerical results. 

RESULTS AND DISCUSSION 

Numerical results were obtained for the two cases 
of VWT and VHF. They cover the values of exponents 
0 < n < 1 and - 0.5 < m < 1. These exponent values 
are found to provide physically realistic problems, 
respectively, for the VWT and VHF cases. Following 
the argument used by Cheng and Minkowycz [3], the 
criterion in determining the range of II or m values is 
based on the requirements that both u and 6, the 
streamwise velocity component and the boundary 
layer thickness, respectively, must increase or at least 
remain constant with respect to x. From equations 
(5) and (17), it can be found that 6 varies with x(‘-“)/~ 
or x(‘-~)‘~ for pure free convection. Also from equa- 
tions (6) and (18) the streamwise velocity u varies with 
x” or x(~+‘)/~ for pure free convection. Thus, the 

0 2 4 5 8 

9 

FIG. I. Dimensionless temperature profiles at selected values 
of x and n (VWT case). 

ranges of exponents n and m are 0 < n Q 1 and 
-0.5 < m < 1, respectively. 

A. Power-law variation of wall temperature 
Figure 1 shows the dimensionless temperature pro- 

files 0(x, PI) at selected values of x and n. It can be seen 
from the figure that, for a given value of x, as n 
increases the thermal boundary layer thickness 
decreases and the temperature gradient at the wall 
increases. This means that a higher value of the heat 
transfer rate is associated with a higher value of n. 
Also, for a given value of n, the thermal boundary- 
layer thickness increases (with decreasing wall tem- 
perature gradient) as x decreases from 1, reaching a 
maximum value at a certain x value, and then 
decreases (with increasing wall temperature gradient) 
as x decreases further to 0. Dimensionless velocity 
profiles in terms of f’(x, II) are shown in Fig. 2. It can 
be seen that at a given x value, the velocity gradient 
at the wall increases and the momentum boundary 
layer thickness decreases as n increases. 

Values of - f?‘(x, 0) at selected values of x are pre- 
sented in Table 1 for different n values. Figure 3 shows 
the local Nusselt number in terms of Nu,(Pe:‘2+ 
Ru.~/~)-‘, or -e’(x, 0), for selected exponent values 

- cl=0 

------- n-*.5 

025 0 0.0 - 
0 2 4 5 

9 

FIG. 2. Dimensionless velocity profiles f’(x, q) at selected 
values of x and n (VWT ease). 
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Table I. Values of -0,(x, 0) and 1/0(x*. 0) at selected values of x, n and x*, M 
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- o’(X> 0) 1/0(x*, 0) 

x or x* n=O ” = 0.5 n = I.0 m = -0.5 m=O m=O.S m= 1.0 

I.0 0.5642 0.8862 1.1284 0.5642 0.8863 1.1284 I .3294 
0.9 0.5098 0.8014 1.0206 0.5082 0.7979 I.0159 1.1968 
0.8 0.4603 0.7259 0.9250 0.4553 0.7127 0.9064 I .0672 
0.7 0.4174 0.6629 0.8457 0.41 I4 0.6364 0.8058 0.9465 
0.6 0.3832 0.6160 0.7877 0.3849 0.5790 0.7248 0.8258 
0.5 0.3603 0.5890 0.7555 0.3812 0.5508 0.6765 0.7800 
0.4 0.3506 0.5844 0.7522 0.3986 0.5548 0.6673 0.7588 
0.3 0.3550 0.6026 0.7783 0.43 I5 0.5853 0.6930 0.7791 
0.2 0.3732 0.6419 0.83 I4 0.4749 0.6350 0.7448 0.8313 
0.1 0.4035 0.6991 0.9071 0.5257 0.6983 0.8154 0.9070 
0.0 0.4438 0.7704 I .oooo 0.5818 0.7715 0.8998 0.9999 

0 ,< n < 1. At a given value of x, as n increases the 
Nusselt number increases. It is also seen that the 
Nusselt number curve reaches a minimum value at a 
certain x value between 0 and 1. This is due to the 
nature of the Nu,(Pe.J” + Ra.i”)- ’ vs x plot and does 
not imply that the actual Nu, value for mixed con- 
vection is smaller than that for pure forced or pure 
free convection. For example, consider the case of 
n = 0 and x = 0.5. If the Peclet number is taken as 
Pe, = 100, the corresponding Rayleigh number can 
be found from the x expression to be Ra, = 100. 
Using the - 0’(x, 0) values listed in Table 1, the local 
Nusselt number Nu, for mixed convection 
(Pe, = 100, Ra, = 100) is 7.206, but for pure forced 
convection (Pe, = 100) and pure free convection 
(Ru,~ = loo), the Nu, values are found to be 5.642 and 
4.438, respectively. From these results, it is obvious 
that the predicted value of local Nusselt number for 
mixed convection is higher than that for pure forced 
convection and pure free convection. 

For practical purposes, correlation equations for 
the local Nusselt numbers were developed for pure 
forced convection, Nur, pure free convection, Nu,, 
and mixed convection, Nu,. The equations for Nur 
and Nu,, which are valid for 0 Q n Q 1 and with an 
error of less than 2%, are given by 

,y = Pe:l’/(P+’ + R&*) 

FIG. 3. Local Nusselt number at selected values of n (VWT 
case). 

Nur = g, (n)Pe,:‘* (2% 

Nu, = g2(n)Ru:‘* (30) 

where 

g,(n) = 0.5650+0.7631n-0.2813n2+0.0821n3 

(31) 

g,(n) = 0.4457+0.8099n-0.3831n2+0.1286n3. 

(32) 

Following Churchill [ 131, the correlation equation for 
the local Nusselt number in mixed convection, Nu,, 
can be expressed as 

(33) 

Substituting equations (29) and (30) into equation 
(33) the correlation equation for the local Nusselt 
number in terms of x parameter can be presented by 

Nu,(Pej’2+Ru”2)-’ 
g,(“) z = {xp+ [(I-x)gy. 

(34) 

The average Nusselt numbers for pure forced con- 
vection and pure free convection are found as 

Nur = 2g, (n)Pel’* (35) 

Nu, = &g2(n)Ru:” 

where PeL and Ru, are the values of Pe, and Ru, at 
x = L. The corresponding correlation equation for 
the average mixed convection Nusselt number G can 
be expressed as 

Nu(PeT2 + Ru~‘~)- ’ 

s,(n) 

= (2xZ+ (1 -X’+,:g;o(n) 
{ [ 

P l/P 

I> . . (37) 

When p = 2 is used, the maximum deviation 
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4. Dimensionless temperature profiles at selected values FIG. 6. Local Nusselt number at selected values of m (VHF 
of x* and m (VHF case). case). 

between the correlated results from equations (34) 
and (37) and the predicted results from equations (14) 
and (15) is about 0.4% for 0 < n < 1 over the entire 
regime of mixed convection. However, this maximum 
deviation will increase to about 11% if p = 3 is used. 

B. Power-law variation of surface heatflux 
Figures 4 and 5 show, respectively, the dimen- 

sionless temperature profiles in terms of 0(x*, a*)/ 
0(x*, 0) and the dimensionless velocity profiles in 
terms of F’(x*, q*) at selected values of x* for 
-0.5 < m < 1. The trends and behaviors of these 
curves are similar to those for the variable wall tem- 
perature case because the effects between the two cases 
are similar. 

The values of 1/0(x*, 0) at different values of x* 
and m are also listed in Table 1. The local Nusselt 
number in terms of Nu,(Pe.i/‘+ Ra.T’/3)-‘, or 
1/0(x*, 0), as a function of x* is illustrated in Fig. 6 
for the exponent values -0.5 < m < 1. The behavior 
of the local Nusselt number curves is similar to that 
for the VWT case. 

As in the VWT case, the local Nusselt number in 
terms of Nu,(Pe.l” f  Ra, * ‘13) - ’ has a minimum value 

z- c 

b 
a 

I.5 - m-O.5 
--_---- m=o 
- _ _._ . ..-. m=, 

12 

FIG. 5. Dimensionless velocity profiles F’(x*, q*) at selected 
values of x* and m (VHF case). 

between 0 < x* < 1. However, the Nu, value for 
mixed convection is actually higher than those for 
pure forced convection (x* = 1) and pure free con- 
vection (x* = 0). For example, for the case of m = 0 
and x* = 0.5 with Pe, = 100, one finds Ra,* = 1000 
and the Nu, values for x* = 0,0.5, and 1 .O are, respec- 
tively, 7.715, 11.016, and 8.863 when use is made of 
the 1/0(x*, 0) values listed in Table 1. 

The local Nusselt numbers for pure forced con- 
vection and pure free convection for the VHF case 
can be correlated by 

NI+ = g,(m)Pei’* (38) 

Nu, = g,(m)Ra,* “’ (3% 

for -0.5 < m < 1, where 

g3(m) = 0.8864+0.5488m-0.1559m2+0.0516m3 

(40) 

g,(m) = 0.7718+0.3043m-0.1189m2+0.0444m3. 

(41) 

The above equations fit the computed results within 
an error of about 2%. The correlation equation for 
the local Nusselt number in terms of the x* parameter 
can be represented by 

Nu,(Pei” + Ra,* ‘13)- ’ 

sdm) 

p ‘lp = x*p+ 
1 [ 

g&d (l-x*)- 
s&4 11 . (42) 

The average Nusselt numbers for pure forced con- 
vection, pure free convection, and mixed convection 
can be correlated, respectively, by the equations 

Nur = 2g,(m)Pe:l’ (43) 

Nu, = &gdNW’” (44 
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Nu(Pep* + Raf ‘13) - ’ - 
93M) 

= mt)‘+ (1 -x3 (,v~;;;:,,, { L 
P IiP 
II (45) 

where Pe, and Ra: are the values of Pe, and Ra.f at 
x = L. 

Again. the value of exponent p can be 2 or 3. When 
p = 3 is used, equations (42) and (45) are found to 
correlate very well with the predicted results from 
equations (26) and (27), with a maximum deviation 
of about 5% in the range of -0.5 < nr Q 1 over the 
entire regime of mixed convection. A choice of p = 2 

will result in a maximum deviation of about 7%. 
It should be mentioned that if the Peclet and Ray- 

leigh numbers become sufficiently large, Darcy’s 
model may not be acceptable, as discussed by Bejan 
and Poulikakos [ 141 for natural convection. However, 
according to the experimental work of Cheng ef al. 
[IS], the present results are expected to be valid for 
Rayleigh numbers less than 1000. The present results 
cover the special cases studied by Cheng [2] for n = 0, 
Cheng and Minkowycz [3] for x = 0, and Bejan [16] 
for x = 1 with II = 0 and x* = 1 with m = 0. 

CONCLUDING REMARKS 

The problem of mixed convection from a vertical 
flat plate embedded in a porous medium is analyzed 
by introducing nonsimilarity parameters x = 
[ 1 + (RaJPe,) ‘I21 - ’ and x* = [ 1 + (Ra.T/Pe.:‘*) “‘I- ’ 
for the cases of power-law variation in wall 
temperature and surface heat flux, respectively. 
Temperature and velocity profiles are presented for 
the entire mixed convection regime ranging from pure 
forced convection (x = 1 ot x* = 1) to pure free con- 
vection (x = 0 or x* = 0). The local Nusselt number 
for the entire mixed convection regime at selected 
values of the exponent n or m are also presented. In 
addition, general correlation equations for the local 
and average Nusselt numbers are provided. The 
maximum deviation between the correlated and the 
predicted mixed convection Nusselt numbers is about 
5% for both heating conditions. 
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